3680E FOE736E??CE		F 322702???CE		? f??KE ?? KE ?@	?f? %E ?? XE ?@		
10/6/2003	<i>f?0</i> 80E	?f????f? ?CE @?? ?CE	?08???E	?	} ??		
? <i>f</i> ?????	? ????Œ	03064	83 ????	08°CE ?	???		

Q1) [10 Marks]

A- define the following

- Supervised Learning
- Hetero-Associative Nets.
- Competitive Nets.
- **B-** What is the difference between binary and bipolar representations of data? Which is better? Why?

Q2) [10 Marks]

Consider a **Hopfield** net with 4 neurons.

A- Find the weight matrix to store the vectors

 $(1\ 0\ 0\ 0)$, $(1\ 1\ 0\ 0)$, $(0\ 0\ 0\ 1)$, and $(0\ 0\ 1\ 1)$ in it.

- **B-** Test the network using the vector (0 1 1 1).
- **C-** Modify the weights to store the vector (1 1 1 0).
- **D-** Draw the architecture of this net.

Q3) [10 Marks]

A. Use the outer product version of Hebb rule learning to find the weight matrix in bipolar form for the **BAM** based on the following binary input-output vector pairs:

S	Т		
1 0 0 0	1 1		
1 0 0 1	1 0		
0 1 0 0	1 0		
0 1 1 0	0 1		

- **B.** Draw the architecture of the network.
- **C.** Using the unit step function (with threshold 0) as the output unit's function, test the response of the network on the following two vectors:
 - X=(1 1 1 1)
 - Y=(0 1).

Q4) [10 Marks]

Consider a **Maxnet** with four units. Find the winner unit when the initial activations (input signals) as follows:

 $A_1(0) = 0.7$ $A_2(0) = 0.2$ $A_3(0) = 0.5$ $A_4(0) = 0.3$.

Assume that e = 0.2.

Q5) [10 Marks]

Given the following three layer **BPN** with the binary sigmoid activation function assuming that the training rate of α =0.25

A- Find the output of the network if the pattern (0 1) is applied to its inputs.

B- Calculate the *weight correction term* of the output unit.

Find useful values in the following table

X	0.05	0.1	0.2	0.4	0.55	0.7	0.9	1.0
F(X)	0.51	0.52	0.55	0.6	0.63	0.67	0.71	0.73
F'(X)	0.25	0.249	0.248	0.24	0.233	0.221	0.2	0.197

Good Luck